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Axisymmetric vortex breakdown 
Part 1. Confined swirling flow 

By J. M. LOPEZ 
Aeronautical Research Laboratory, P.O. Box 4331, Melbourne, Vic., 3001, Australia 

(Received 7 August 1986 and in revised form 14 May 1990) 

A comparison between the experimental visualization and numerical simulations of 
the occurrence of vortex breakdown in laminar swirling flows produced by a rotating 
endwall is presented. The experimental visualizations of Escudier (1984) were the 
first to detect the presence of multiple recirculation zones and the numerical model 
presented here, consisting of a numerical solution of the unsteady axisymmetric 
Navier-Stokes equations, faithfully reproduces these phenomena and all other 
observed characteristics of the flow. Further, the numerical calculations elucidate 
the onset of oscillatory flow, an aspect of the flow that was not clearly resolved by 
the flow visualization experiments. Part 2 of the paper examines the underlying 
physics of these vortex flows. 

1. Introduction 
Vortex breakdown in swirling flows has been the subject of much attention since 

it was first recognized in the tip vortices of delta-winged aircraft (Peckham & 
Atkinson 1957). More recently it has emerged as a serious problem a t  high angle of 
attack for highly manoeuvrable military aircraft. As yet, there is no general 
consensus on the physical mechanisms responsible for its occurrence. The term 
vortex breakdown is associated with an abrupt change in the character of a columnar 
vortex at some axial station. It is usually observed as a sudden widening of the 
vortex core together with a deceleration of the axial flow and is often followed by a 
region or regions of recirculation. 

The work reported here and in Part 2 (Brown & Lopez 1990) is a part of a larger 
programme (Lopez 1988 and Brown & Lopez 1988) to develop further an 
understanding of vortex breakdown, particularly as it relates to highly manoeuvrable 
aircraft. 

Experimental studies of vortex breakdown over delta-winged aircraft have been 
severely hampered by the sensitivity of the flow to the presence of external probes, 
making quantitative measurements of the flow in the ‘burst ’ regions much more 
difficult. Further complications arise as a result of the large number of parameters 
involved, some of which are difficult to measure and/or control and whose 
importance to the mechanisms leading to vortex breakdown is not known. With the 
identification of the vortex breakdown of swirling flows in cylindrical tubes (Harvey 
1960), a large number of experimental investigations were undertaken (e.g. Sarpkaya 
1971 ; Paler & Leibovich 1978; Escudier & Zehnder 1982). A number of distinctive 
forms of breakdown were observed in these investigations, which also showed the 
phenomenon typically to be unsteady and possessing various degrees of turbulence 
and asymmetry. From these results, it had been assumed that a description of vortex 
breakdown would require a three-dimensional, time-dependent calculation of the 
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Navier-Stokes equations, albeit with the possibility a t  high Reynolds numbers of 
modelling the small-scale turbulence. Early attempts to model this swirling pipe 
flow, however, were restricted to the axisymmetric time-independent Navier-Stokes 
equations. Calculations using these equations by Grabowski & Berger (1976) gave 
numerical solutions depicting a closed recirculation zone, very similar to the 
‘axisymmetric ’ breakdown bubbles found by Harvey (1960) and Sarpkaya (1971). It 
has not been shown whether these solutions to the time-independent equations are 
steady solutions of the time-dependent equations. Further discussion of the 
numerical simulation of the swirling pipe flow is deferred to $3  of Part 2. 
Comprehensive literature reviews by Hall (1972), Leibovich (1978, 1984) and 
Escudier (1986, 1988) give extensive accounts of the experimental, theoretical and 
numerical work on vortex breakdown. 

Escudier (1984) observed the phenomenon of vortex breakdown in swirling flows 
in a cylindrical container with a rotating endwall, using a laser-induced-fluorescence 
technique. The experimental results extended those obtained earlier by Vogel (1968) 
and Ronnenberg (1977) and are the first to be reported in which multiple breakdown 
bubbles exist in the closed cylindrical geometry. The recirculation bubbles were 
observed to be axisymmetric and steady over a large range of the governing 
parameters, which reinforced Escudier’s (1984) view, earlier expressed as a result of 
a series of swirling pipe flow experiments (Escudier & Keller 1983), that vortex 
breakdown in general is inherently axisymmetric and that departures from axial 
symmetry result from instabilities not directly associated with the breakdown 
process. Escudier’s experiments provide a particularly well-defined set of flows in 
which vortex breakdown occurs. They are mathematically well posed, especially 
with regard to the boundary conditions. His figures (1984) motivated the present 
study in which the Navier-Stokes equations are solved numerically under the 
assumption of axial symmetry. A principal aim of this initial study was to clarify 
whether, under the assumption of axial symmetry, the numerical solutions accurately 
reproduce all of the observed flow characteristics reported by Escudier (1984). 

A further motivation for undertaking the investigation was to develop a more 
detailed understanding of the physics of the flow and to clarify features that were not 
readily resolved from the visualizations. For example, the dye streaks are ‘blurred ’ 
in the region of critical points in the experiment and the nature of the downstream 
end of the recirculation bubble is difficult to ascertain from flow visualization. A 
main reason for this ‘blurred ’ picture is dye diffusion but, in some cases Escudier 
(1984) noted that certain recirculation zones never develop a well-defined internal 
structure. The numerical study shows that these regions in fact possess a localized 
low-frequency unsteadiness and this unsteadiness would result in a ‘ blurred ’ flow 
visualization. 

In Part 2 of this study the physics of the flows is examined in more detail. The 
vortex breakdown phenomenon is viewed from a new perspective. Instead of 
concentrating on the stream function or the velocity and pressure field as has been 
common in the past (e.g. Squire 1960; Benjamin 1962), emphasis is placed on the 
azimuthal component of vorticity. An explanation of the vortex breakdown 
phenomenon is given based on the behaviour of the azimuthal vorticity. The 
mechanics of vortex breakdown in this particular geometry suggests a generalization 
to other geometries. This is discussed in Part 2 for the further case of swirling pipe 
flow. 

Previous numerical studies of swirling flows confined within a cylindrical container 
(e.g. Pao 1970; Lugt & Haussling 1973; Dijkstra & Heijst 1983) have either been 
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restricted to small-aspect-ratio flows (HIR, ratio of height and radius of the cylinder, 
less than l ) ,  or flows with Re, the rotational Reynolds number, too small for vortex 
breakdown to occur. Lugt & Haussling (1982) is a notable exception in which 
H/R < 1.6, and the occurrence of a single breakdown bubble is reported. Their 
computational mesh does not appear to be fine enough, however, since they found 
the size and location of the bubble to vary as the resolution was altered and the 
timescales of their solutions are not consistent with experimental observations. 

Since the first version of this paper was submitted, Lugt & Abboud (1987) have 
also published numerical computations of the vortex breakdown phenomenon 
produced in an enclosed cylinder by a rotating endwall. Their calculations and those 
presented here overlap somewhat as both studies use the available experimental 
results of Escudier (1984) as comparisons for the numerical calculations. The results 
presented by Lugt & Abboud (1987) generally agree very well with those presented 
here but their numerical method of integrating the governing equations is quite 
different to the present method. A large number of their results had not been 
integrated forward until a true steady state had been reached and no information 
regarding the distribution of the azimuthal component of vorticity is presented, 
which is shown in Part 2 of this study to be particularly significant in developing an 
understanding of the physical mechanism responsible for the vortex breakdown of 
the vortical core flow. 

2. Governing equations and boundary conditions 
The flows of interest are simulated by considering a cylinder of radius R and length 

H ,  the bottom endwall of which is impulsively started to rotate a t  constant angular 
velocity SZ. The fluid, which completely fills the cylinder, is incompressible, of 
uniform density and a constant kinematic viscosity v. The axisymmetric form of the 
Navier-Stokes equations, in cylindrical coordinates ( r ,  6, z )  with corresponding 
velocity components (u, v ,  w), is employed. Time and length are scaled by G? and 1/R 
respectively. 

The system of equations is solved by employing the stream-function-vorticity 
formulation, where the pressure does not appear explicitly. This is achieved by the 
introduction of a stream function $, where 

which satisfies continuity and gives for the azimuthal component of vorticity 

Incorporating (1) and(2) in the Navier-Stokes equations leads to the following 
prediction equations for the azimuthal components of velocity and vorticity together 
with the prognostic equation for the stream function : 
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and 

where 

and 

The boundary conditions relevant to the experiments of Escudier (1984) t o  
complete the system (3)-(5) are 

$ = v = q = O  ( r = O ,  O < z < H / R ) ,  \ 
1 a 2 $  

~ = v = O ,  q=-;? ( r = l ,  O < z < H / R j ,  

The boundary condition a t  r = 0 is due to the axial symmetry of the flow, the 
boundaries a t  z = H / R  and r = 1 are rigid and stationary, while a t  z = 0, the rigid 
endwall is in constant rotation for t > 0. The fluid is stationary for t < 0. 

3. Method of solution 
The system of differential equations (3)-(5) are replaced by an approximating set 

of finite-difference equations, defined on a uniform mesh in the ( r ,  2)-plane at times 
nAt (n = 0,1 ,2 ,  ...). There are (nr+ 1) x (nz+ 1) grid nodes, and in all the cases 
presented here, the increments Ar and Az are equal. Second-order-accurate centred 
differences are used to approximate all the spatial derivatives except those in the 
advection terms, where the Jacobian conserving difference operator J is approxi- 
mated using a scheme due to Arakawa (1966). The time-differencing scheme used 
is that of Miller & Pearce (1974) which consists of alternate time-steps. For a 
prediction equation of the form aF/at = G ( F ) ,  the odd time-steps are advanced 
according to 

F* = F" + AtG(F"), 

p n + 1 =  Fn  + AtG(F*), 

pn+l = F" + AtG(F"). 
while for even time-steps 

The prognostic equation (5) for the stream function is solved using the generalized 
cyclic reduction method of Sweet (1974). 

To implement the boundary conditions for the azimuthal vorticity at  the solid 
boundaries at  time (n+ 1) At, the stream-function field a t  that time is needed. This 
is achieved by the following algorithm. First, the prediction equations (3) and (4) for 
v and q may be advanced to the next time-step (n + 1 )  At for the interior points since 
the prognostic equation (5)  for t,h only requires knowledge of the interior values of 7. 
From the solution to (5) together with the boundary conditions for $, the stream 
function is known everywhere a t  t = (n+ 1)  At. The boundary values of 7 can now be 
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Re 

1256 
1256 
1492 
1492 
1854 
1854 
1994 
2126 
2126 
2889 
3023 

H / R  nr nz 

1.5 40 60 
1.5 60 90 
1.5 40 60 
1.5 60 90 
1.5 40 60 
1.5 60 90 
2.5 60 150 
2.5 60 150 
2.5 100 250 
3.5 60 210 
2.5 60 210 

47) 
-0.000386 
- 0.000 175 
-0.000418 
- 0.000 188 
-0.000461 
-0.000206 
- 0.000237 
- 0.000244 
-0.000175 
-0.000277 
- 0.000286 

47') 
0.12590 
0.12619 
0.12888 
0.12908 
0.13130 
0.134 17 
0.15684 
0.15893 
0.16041 
0.18056 
0.18206 

47-1 
-0.12628 
-0.12637 
- 0.12929 
-0.12927 
- 0.13 1 76 
-0.13438 
-0.15708 
- 0.159 18 
- 0.16058 
- 0.18083 
- 0.18234 

TABLE 1 .  Characteristics of the vorticity integral (7) for selected cases 

estimated from + by noting that + and its normal derivative vanish at a rigid 
boundary. Hence, expanding + about the first point in from the boundary leads to 

?;l(nr+ 1 , j )  = -2+(nr,j)/Ar2, 

and ?;l(i, nz+ 1) = -2$(i, nz)/(rAzz).  

Proper resolution of the boundary layers and any recirculation zones was ensured 
by the use of Ar = Az = 1/60. A number of runs for H/R = 1.5 were performed using 
Ar = Az = 1/40 with only slight differences in the outline of the recirculation zone 
being noted - the positions of the stagnation points were not appreciably altered by 
the reduction in resolution. One run at  H/R = 2.5 and Re = 2126 implemented Ar = 
Az = 1/100. The difference between the streamlines from these results and those from 
calculations with Ar = Az = 1/60 were insignificant. All the calculations presented 
here are for Ar = Ax = 1/60 and At = 0.05, except for the one case of H/R = 2.5 and 
Re = 2126 where Ar = Az = 1/100 and At = 0.025. In all cases, the stability of the 
model was ensured by the time-step satisfying both the Courant-Friedrichs-Lewy 
condition and the diffusion requirement (Williams 1967), 

At < ;Re A?. 

The quality of the numerical computations was further verified by (i) direct 
comparisons with experimental results (§4), and (ii) evaluation of the vorticity 
integral (Dijkstra & Heijst 1983). From the definition of the azimuthal vorticity (2), 
together with the boundary conditions, the stream function and its normal 
derivatives vanish on solid boundaries and + = 0 on the axis of symmetry, hence 

~ ( i ,  1) = - 2+(i, 2)/(rAzP), 

sss, rq dV = 2x Lo roR r2q dz dr = 0. (7) 

At t = 1000, this integral was evaluated by means of a two-dimensional trapezoidal 
rule, and the positive and negative contributions to the trapezoidal sum accumulated 
separately in I(?;l+) and I (q- )  respectively. In the limit Ar,Az+O, I(?;l+)+I(v-) = 0. 
The degree to which this is achieved is an indication of the quality of the numerical 
scheme. Table 1 lists the values of the integral (7) together with I(?;l+) andZ(q-) for a 
selection of the cases considered. It is clear that the accuracy of the calculations is 
improved by increasing the resolution from Ar, Az = 1/40 to 1/60. For the case 
Re = 1256, Irel = (I(q-) +I(q+))/(I(q-) - I ( $ ) )  z 0.0015 when Ar, Az = 1/40, whereas 
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FIGURE 1. Stability boundaries for single, double and triple breakdowns, and boundary between 
steady and oscillatory flow, in the (Re, H/R)-plane (empirically determined by Escudier 1984). The 
locations in parameter space where the flow has been simulated are indicated by 0. 

I,,, x 0.00069for Ar, Az = 1/60. On further grid refinement, as illustrated by the Re = 

2126 case, Irel x 0.00077 for Ar, Az = 1/60 and Irel x 0.00055 for Ar, Az = 1/100, 
indicating that Ar, Az = 1/60 constitutes a good compromise between the level of 
accuracy and the computational effort required to achieve it. The extent to which the 
vorticity integral (7) is satisfied is reduced as Re is increased. However, in the Re- 
range considered, this trend is very weak, as when Re = 1492 and Ar, Az = 1/60, 
Irel x 0.00072, whereas for Re = 3023 and Ar, Az = 1/60, Irel x 0.00078. 

Although most of the solutions presented in this study reach a steady state (those 
which do not are noted), it is important to ensure that the model has temporal as well 
as spatial accuracy. In  the parameter range where the flow reaches a steady state, 
Escudier (1984) reported that the time taken to reach this steady state from an 
impulsive start was typically tens of seconds. I n  that same parameter range, i.e. 1.5 
6 H/R < 2.0 and 1000 < Re 6 1500, the numerical model reaches steady state for t 
between 500 and 700. In  the case where v = 4.5 x lop5 mz/s and R = 9.5 x m, 
which are the values in the experiments of Escudier (1984), we find Q x Re1200 and 
a ‘spin-up’ time to steady state of approximately 60s. The numerical result is 
consistent with the experimental observations. 

Escudier found experimentally that the flow undergoes a transition to unsteadiness 
a t  some critical combinations of Re and HIR and he has mapped this transition 
(figure 1). A t  the point where the flow becomes unsteady, the flow visualization 
technique is no longer able to  give a clear picture of the flow characteristics. The 
present numerical solutions are found to accurately predict those flows which lead to 
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a steady state. This has given us confidence to investigate the transition to 
unsteadiness and this aspect of the flow is the subject of a further report which is in 
preparation. Preliminary results on the unsteady aspects of this flow are reported in 
Lopez (1989) and 54. 

4. Results and discussion 
Escudier (1984) has mapped a ‘stability diagram ’ in the (Re, H/R)-plane 

delineating the regions where single, double and triple recirculation zones occur, 
together with the boundary between steady and oscillatory flows, This diagram is 
reproduced in figure 1. Some of the parameter values a t  which the flow has been 
simulated in this study are also indicated in the figure. Escudier has made available, 
photographs of the recirculation zones and a number of these are reproduced here for 
comparison with the numerical solutions. The reader should be aware that in the 
photographs of the experiment, radial distances are reported to appear uniformly 
stretched by 8% due to refraction a t  the various interfaces. 

The following is a brief description of the basic flow features. 
The fluid, which completely fills the cylindrical container, is initially a t  rest. At 

t = 0, the bottom endwall is impulsively set to rotate at  constant angular speed Q. 
An Ekman boundary layer develops on the rotating disk with thickness of order 
(v/QR~)O.~. This rotating boundary layer then acts as a centrifugal pump, sending 
fluid radially outwards in a spiralling motion while ‘sucking ’ fluid into it from above. 
This pumping action of the boundary layer together with the presence of the 
cylindrical wall a t  r = R sets up a secondary meridional circulation. The fluid 
pumped out of the Ekman layer spirals up the cylindrical wall, establishing a 
sidewall boundary layer. In time, fluid with angular momentum reaches the vicinity 
of the stationary top endwall, where it is turned and advected towards the centre. It 
spirals inwards creating a further boundary layer on the top endwall. On the 
stationary endwall the fluid separates at r = 0 and a concentrated central vortex is 
formed whose core size depends on the depth of the boundary layer from which it 
emerged. The fluid then spirals down this central vortex to be sucked back into the 
Ekman layer. 

The experimental studies of this flow show that it undergoes a series of transitions 
as the two governing parameters, Re and HIR, are varied. The present study focuses 
on the development of the flow characteristics with Re and H/R up to the point where 
the flow no longer reaches a steady state. In  particular, in the region of parameter 
space considered, i.e. Re < 3000 and H/R < 3.5, the flow is observed experimentally 
to remain axisymmetric and laminar, and for the most part to reach a steady state. 

Figure 1 suggests that the flow characteristics depend critically on the Reynolds 
number. The numerical solutions suggest, however, that the basic dynamics of the 
central vortex are inertially driven and that viscous shears are small outside 
recirculation zones, boundary layers and away from the meridional shear layer in the 
bottom half of the cylinder which is caused by the strong turning a t  the corner 
r = R, z = 0. A comparison of the ‘streamline ’ contours i.e. intersections of stream 
surfaces with the meridional plane, and contours of the angular momentum r = rv, 
on the meridional plane show that even a t  the relatively low value of Re = 1000 (see 
figure 2a) r is nearly constant on stream surfaces in the central region. 

A more typical case where recirculation bubbles exist is Re = 1994. Figure 2 ( f )  ($ 
and I‘) and figure 3 (A? = p / p + i ( u 2 + v 2  + w 2 ) )  illustrate how the fluid acquires its 
angular momentum and total head in the Ekman layer on the rotating endwall and 
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(ii) (iii) (a) Re = I000 (i) 

min. = -9.7 x max. = 1.6 x lo-' 

(b) Re = 1600 

' min. = 0 max. = 1.0 min. = -2.8 max. = 11.6 

min. = -8.3 x lo-' max. = 2.1 x lo-' 

(c) Re = 1800 

min. = 0 max. = 1.0 min. = -3.5 max. = 14.4 

min. = -8.0 x lo-' max. = 2.4 x lo-' min. = 0 max. = 1.0 

FIGURE 2(a-c). For caption see page 

min. = -3.7 max. = 15.2 

542. 
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FIQIJRE 2(d-f). For caption see next page. 

541 
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FIGURE 2. Contours of (i) ~, (ii) r and (iii) 9 in the meridional plane for HIR = 2.5 and Re as 
indicated. The contour levels are non-uniformly spaced, with 20 positive and 20 negative levels 
determined by c-level(i) = Max(wuriubZe) x ( i /20)3  and c-level(i) = Min(wuriubZe) x ( i /20)3 
respectively. All are plotted at t = 1000 by which time steady-state flow conditions have been 
reached, except for ( i )  which shows the time averages over 750 < t < 1000 of an oscillatory flow. 
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min. = -3.8 x lo-* max. = 6.5 x lo-' 

FIQURE 3. Contours of JEP in the meridional plane for H / R  = 2.5 and Re = 1994. The contour levels 
are non-uniformly spaced, with 20 positive and 20 negative levels determined by c-level (i) = Max 
(varidZe) x ( i /20)2  and c-level (i) = Min (variable) x (i/20)2 respectively. The contours are plotted at 
t = IOOO, by which time steady-state flow conditions have been reached. 

loses r a n d  3? in the viscous boundary layers on the stationary walls. In the central 
core region, however, a detailed comparison between the contours of $, r and % 
shows that r and 3? are approximately constant on stream surfaces, apart from 
those surfaces within and near to the recirculation bubbles where r and % are 
relatively small. 

At Re = 1000, the curvature of the stream surfaces of the vortical fluid returning 
towards the lower rotating endwall does not change sign and the secondary 
meridional flow consists of a simple overturning motion. From the contour plots of 
the azimuthal vorticity (figure 2a(iii)), we find that 7 is positive in the boundary- 
layer regions and negative in the interior flow, consistent with a deceleration of the 
meridional flow in the boundary layers. Of particular interest is the small region of 
positive 7 just above the Ekman layer about the axis of symmetry. 

It is interesting to examine the effect of increasing Re for the case in which 
H / R  = 2.5. At Re = 1600 a waviness is evident in the stream surfaces of the central 
vortex as well as in the contours of r (see figure 2 b ) .  Comparing the r-contours of the 
two cases Re = 1000 and 1600, it is clear that a greater proportion of the fluid's angular 
momentum has been advected towards r = 0, in the upper boundary-layer region, 
leading to the formation of what appears to be a weak centrifugal wave in the higher- 
Re case. The contours of 'I at Re = 1600 (see figure 2b(iii)) are qualitatively similar 
to those a t  Re = 1000, but now the extrema in the values of the azimuthal vorticity 
have increased. The region of positive azimuthal vorticity in the interior of the flow 
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is extended considerably and roughly coincides with the region of ‘wavy’ stream 
surfaces. 

The development of this standing wave on the vortex core region does not accord 
with the explanation given by Lugt & Abboud (1987), where it is suggested that the 
presence of the corner between the stationary sidewall and the stationary endwall 
(i.e. r = R ,  z = H )  initiates the ‘wavy motion’ as the flow negotiates this corner and 
is then forced back towards the rotating disk, and that this ‘wavy motion’ is a 
viscous effect. The numerical results from this study clearly show that the ‘wavy 
motion’ is initiated (in the sense of increasing Re) well downstream of the viscous- 
boundary-layer flow and is associated with the development of a positive azimuthal 
component of vorticity. In Part 2, it is shown that the waves are driven by an inertial 
process, where the azimuthal component of vorticity plays an important role. 

The above effects are further enhanced as Re is increased to 1800. Here the stream 
surfaces (figure 2c) clearly indicate the presence of a centrifugal wave with two 
periods and two bulges on the axis at approximately i H  and gH. Note, however, that 
the central vortex, as it emerges from the endwall boundary layer has stream 
surfaces that are almost parallel with a relatively large radial gradient, indicating the 
presence of a relatively large axial velocity in this core flow. 

An increase in Re to 1918 crosses the boundary between no ‘ breakdowns ’ and 1-2 
‘breakdowns’ on figure 1. The amplitude of the waves has increased and their 
wavelength decreased (see figure 2 4 .  With the increased amplitude and decreased 
wavelength, the associated axial deceleration is large enough to cause the flow to 
stagnate under the crest of the wave. Within this stagnant region is found a near- 
spherical region of recirculating fluid which is termed a vortex breakdown bubble, i.e. 
a toroidal vortex centred on the axis of a columnar vortex. At this particular value 
of H/R there are two breakdown bubbles, the downstream bubble being considerably 
smaller and the recirculating flow within it slower than in the leading bubble. 

For H / R  < 1.95, both the experimental investigations of Escudier (1984) and our 
numerical calculations only identify single breakdown bubbles and for H / R  < 1.2, no 
breakdown bubbles are found. Pao (1970) observed, in a related problem where the 
cylinder wall also rotates at the same angular speed as the disk, that for H/R = 1.0 
and Re > 500 standing waves appear in the axial plane, and reported a similar 
dependence on Re for these waves as is found in this study. His experimental 
investigations include cases to Re = 8600 where the flow was reported to be steady, 
axisymmetric and laminar. However, he did not find any recirculating breakdown 
bubbles in his low-aspect-ratio (H/R = 1.0) container. 

As Re is increased to 1942 (figure B e ) ,  1994 (figure 2f) and 2126 (figure 2 g ) ,  very 
good agreement is found between the calculated stream surfaces and the observations 
of Escudier (1984). Some of these experimental observations are included for 
comparison with the numerical solutions in figure 4. 

Although the length of the recirculation bubbles has grown with the increases in 
Re, the wavelength on the outer stream surfaces has been reduced. There remains a 
general trend that as Re is increased, the wavelength is reduced and the wave 
amplitude increased. The increase in the bubble diameters with Re is indicative of the 
increased wave amplitudes. The shortening of the wavelength is also consistent with 
the behaviour of the recirculation bubbles. As Re is increased, the region of near- 
parallel flow just after the vortex emerges from the boundary layer on the stationary 
endwall is shortened. This leads to a migration of the leading bubble towards this 
endwall. Note also that the distance between the two bubbles is progressively 
reduced as Re is increased. 
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(b) Re = 2494 (c) Re = 2765 

545 

FIQURE 4. Flow structure of the recirculation zones for H / R  = 2.5 and Re as indicated. (a), ( b )  Left 
halves of the figures are visualizations of the steady dye-lines and the right halves are the computed 
contours of the stream function at steady state for 0 < r < 5R/12 ; ( c )  is a snap-shot of the unsteady 
dye-lines in an oscillatory flow. All photographs of the experimental visualization are reproduced 
by kind permission from M. P. Escudier. 

The distribution of r i s  particularly interesting. For fluid in the central vortex that 
has emerged from the upper boundary layer, r is conserved on the stream surfaces 
for some axial distance over which the vortex remains concentrated. As a parcel of 
fluid spirals downstream past the breakdown region, there is a change in its angular 
momentum. When the fluid is first deflected radially outwards around the breakdown 
bubble, there is an increase in r, and when it is converged again around the 
downstream half of the bubble it loses some of this gain in angular momentum. The 
gradients in azimuthal velocity are large enough for the viscous stresses to effect 
these changes. Past the breakdown regions, the angular momentum distribution then 
corresponds to essentially solid-body rotation of the fluid. In essence, in these flows, 
the breakdown region is like a transition region from a concentrated vortical flow to 
solid-body rotation. 

The details of the flow structure in the recirculation bubble are of particular 
interest in this study, even though their dynamical significance to the overall flow 
structure is secondary, because they provide an excellent test for the accuracy of the 
numerical solutions. It is possible to obtain very good flow visualizations of the 
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FIQURE 5. (a), (b ) .  Time histories of @ x lo4 at ( r  = 13, z = $H) for H/R = 2.5 and Re as 
indicated. 

breakdown bubbles and their structure, and correspondingly of critical points and 
flow reversals. These features are much more demanding on a numerical model than 
the relatively simple structure of the outer flow. 

Comparing in detail the structure of the recirculation regions as determined 
numerically and observed experimentally for Re = 2126 and H / R  = 2.5 (figure 4a) 
we find very good agreement between the two. The structure of the upstream bubble 
is now clearly interpreted with the aid of the numerical solution. The leading 
stagnation point is well defined in the flow visualization ; however, the downstream 
stagnation point is not as some dye finds its way into the bubble and some is swept 
past. As the fluid passes over the bubble a t  maximum diameter, the streamlines 
indicate a local acceleration of the meridional flow over the 'obstacle ', i.e. bubble. As 
the fluid passes the bubble, it converges back towards the axis; however, the axial 
flow is now considerably slower than it was in its approach to the leading stagnation 
point. The dye photograph of the leading bubble shows a thin well-defined outer 
envelop with a rather broad, diffuse inner core. This is matched by the computed 
streamlines where they are contracted to the outer edge of the bubble and spread out 
within the interior. The same is true for the downstream bubble, although this 
information is not evident from the dye photograph since it appears that the dye is 
residing principally between a narrow band of streamlines which envelop the bubble, 
with virtually no dye inside the bubble. The computed streamlines indicate that the 
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recirculating flow in the downstream bubble is considerably slower than in the 
upstream bubble. Downstream of the second bubble, the enveloping dye streak is 
broad and is tapered as it approaches the Ekman layer. This behaviour is mirrored 
in the computed streamlines and may be interpreted as an axial acceleration of the 
flow, probably as a result of the boundary-layer suction. 

This very close agreement between experimental observation and numerical 
calculation of the recirculation zones has not been achieved in every case, although 
in all cases the agreement has been very good. The reason is because the structure of 
the recirculation zones in the vicinity of parameter space where a recirculation zone 
just emerges is critically dependent on the value of Re. For example, the small change 
in Re from 1918 to 1942 (1.2%) results in a 25% increase in the diameter of the 
leading bubble and a 300 % increase in the diameter of the second bubble, whereas 
the outer flow remains virtually unchanged (see figure 2d, e). Hence, a small 
percentage error in the estimate of Re can be responsible for a significant difference 
between the observed structure of the recirculation bubbles and their computed 
structure. Unfortunately, no uncertainty estimates on Re are available for the 
experimental observations. Escudier reports, however, that the temperature of the 
fluid was maintained a t  25 "C f 0.1 "C and the viscosity of the fluid varied by about 
5 YO per "C. Hence a possible uncertainty of 0.5% exists in the estimate of Re due to 
the uncertainty in viscosity alone. For flows that are not so close to these critical 
parameter regions, the structure of the recirculation bubbles is not so variable with 
Re and a much closer agreement between the computations and the observations was 
found. 

As the Reynolds number of the flow increases, the downstream bubble approaches 
the tail of the upstream bubble. Just beyond the value of Re a t  which the tail 
stagnation point of the upstream bubble coincides with the leading stagnation point 
of the downstream bubble, there is a topological change in the flow structure. For 
H/R = 2.5 this occurs for 2300 < Re < 2400. This transition leads to a flow in which 
there are two stagnation points on the axis of symmetry defining the head and tail 
of the recirculation zone which encloses two distinct zones. These two zones are 
connected by a ring seen as two saddle points either side of the axis of symmetry in 
the meridional plane. In  the case of Re =2494, HIR = 2.5 (see figure 2h) ,  this flow 
pattern is steady. The two critical streamlines, i.e. $ = 0 enclosing the bubble and 
$ = 1.609 x defining the saddle points, are very close together around the outer 
envelope of the recirculation bubble, whereas there is a considerable gap between 
them near the axis of symmetry (see figure 4b). 

At this point, it is worth noting the timescales of the evolution of these flows. As 
previously noted in $3, for the lower-Re cases, i.e. 1000 <Re  < 2000, the system 
reaches steady state after, following an impulsive start from rest, between 500 and 
700 rotations of the bottom endwall. However, beyond Re x 2000, the time taken to 
reach steady state increases rapidly with Re, as indicated in figure 5 ( a )  where time 
histories of the stream function at a point in the flow ( r  = +R, z = gH) are given for 
2200 <Re d 2600. The rapid increase in the time taken to reach steady state 
coincides with the transition in the structure of the recirculation bubbles, i.e. the 
coalescence of the two distinct bubbles present a t  lower Re. It is in the physical 
vicinity of the coalescence of the bubbles that the transient unsteadiness in the flow 
is most pronounced. 

When Re is increased to 2765, the computed flow is unsteady and its structure 
oscillates between the structures typical of Re = 2126 and Re = 2494. Figure 2 ( i )  
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shows time-averages of $, r a n d  7. This figure may be compared with the ‘snap-shot ’ 
of the experimental flow (figure 4 c )  which Escudier (1984) found to be steadily 
oscillating. 

The flow visualization of this oscillatory flow, however, does not give a clear 
indication of the nature of the unsteadiness. Figure 5 ( b )  shows the time history of the 
computed stream function at ( r  = kR, z = 2H). After approximately 2750 revolutions 
of the endwall, the flow has settled down to a periodic state. The flow structure in the 
central core region over one cycle is given in figure 6 (a )  for 2966 < t < 2998, and the 
time history for ~ at ( r  = 18, z = 2H) is detailed in figure 6 ( b ) .  The filled squares 
correspond to the instantaneous streamlines in figure 6(a). As is clear from the 
instantaneous streamlines (figure 6a), which was not clear from the unsteady dye- 
lines (figure 4c),  the nature of the unsteadiness is due to the interaction between the 
two bubbles - coalescing and separating and coalescing etc. This might be regarded 
as consistent with the behaviour at lower Reynolds number where the time to reach 
steady state and the transient unsteadiness increase as the bubbles move closer 
together with increasing Re. 

Note that the visualization of the unsteady dye-lines indicate that the flow 
upstream of the recirculation region is essentially steady and that the vortex core 
emerging from the endwall boundary layer is concentrated. These features are also 
present in the computed instantaneous streamlines. The ‘ mushroom ’ appearance of 
the upstream part of the recirculation zone in the unsteady dye-line figure might be 
understood from the fact that the vertical velocity changes sign within each cycle 
and leads to the complex folding of the dye-lines as shown in figure 4(c) .  A more 
detailed study of the streamlines and streaklines that are obtained in this unsteady 
flow is in progress. 

In the region designated as ‘three breakdowns ’ by Escudier (1984), numerical 
results were obtained for H / R  = 3.25 and 3.5 as indicated in figure 1. In all cases 
considered, the downstream recirculation zone consists of two coalesced recirculation 
bubbles. The upstream breakdown region, however, remains separate. The numerical 
solutions for these ‘triple breakdown’ cases did not reach steady state after 1000 
rotations of the bottom endwall. The parameter values for which these solutions were 
obtained are very near to those which, according to figure 1, separate steady and 
unsteady flows. Escudier (1984) observed that for parameter values in this region, 
steady conditions are only reached after a very long time (hundreds of rotations of 
the endwall). The amplitudes of the oscillations for the H/R = 3.25 cases are 
relatively small, consisting of variations in the values of the stream function of 
approximately 1 %. The oscillations for the H / R  = 3.5 cases were considerably 
larger, with the middle breakdown zone oscillating most. Figure 7 (b-d) shows time- 
averaged contours of +, r and for Re = 3061 and H / R  = 3.5 and figure 7 (a) is a 
photograph of the flow for the same values of the parameters. It is interesting to note 
Escudier’s (1984) observation that the central recirculation zones for the H/R = 3.5 
cases ‘never develop into well defined regions’, and this now appears to be due to 
these regions not quite reaching steady state. 

5. Conclusion 
A numerical solution of the axisymmetric NavierStokes equations has been 

obtained and used to examine the vortex breakdown phenomenon which occurs at  
certain values of the governing parameters for flows in an enclosed cylinder driven 
by a rotating endwall. The accuracy of the numerical solutions has been established 
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by varying the grid resolution and by determining the extent to which an integral 
identity is satisfied for the flow. Further, the numerical solutions are compared in 
detail with available experimental results, particularly dye-streak photographs of 
the flow. The extent of the agreement between the numerical solutions and the 
experimental results is critically examined and is found to be very good. Certain 
features of the flow, particularly connected with the development of recirculation 
zones and the onset of oscillatory flow, which could not be resolved from the 
visualization experiments, have been described. The numerical solutions also provide 
a clear picture of the topology of the flow, especially of the structure of the multiple 
recirculation zones. 

In Part 2 of this study, the numerical solutions are analysed further and a physical 
understanding of the vortex breakdown phenomenon is gained. 
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